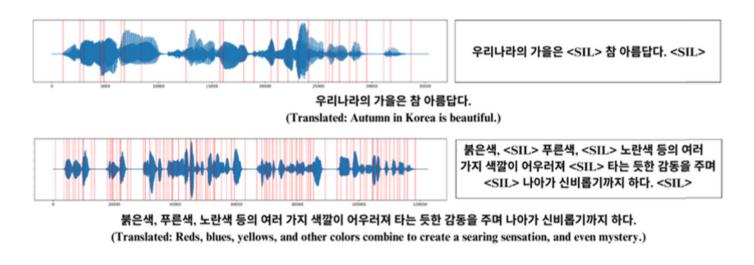
Inappropriate Pause Detection In Dysarthric Speech Using Large-Scale Speech Recognition

Jeehyun Lee^{1,*} Yerin Choi^{1,*} Tae-Jin Song² Myong-Wan Koo¹ Department of Artificial Intelligence, Sogang University, South Korea¹ Ewha Womans University College of Medicine, Seoul, Republic of Korea²

* Equal Contribution

SOGANG

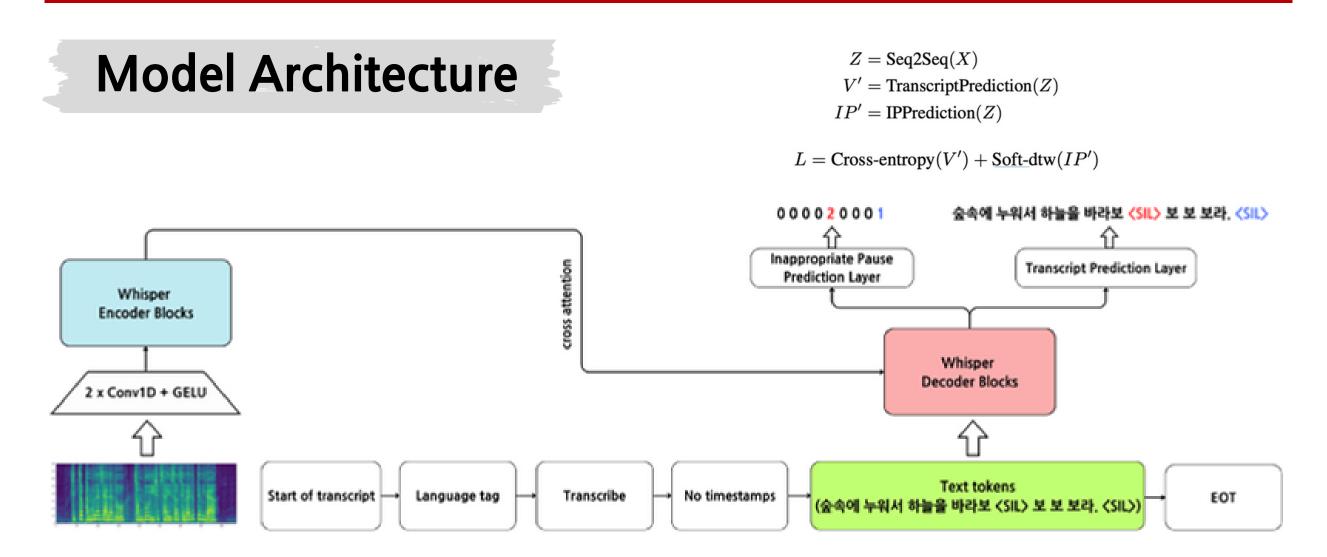


Overview

Introduction

- Post-stoke dysarthria is a common issue among stroke patients, severely impairing speech control.
- Inappropriate pause (IP) refers to delays that occur in untypical locations.
 Pauses occur unexpectedly, such as in the middle of a noun phrase, resulting in reduced speech intelligibility.
- Inappropriate pause is one of the factors in assessing dysarthria severity.

Existing Methods



- Current assessment relies on time-consuming auditory evaluation, lacking automatic inappropriate pause detection.
- Phoneme segmentation is costly, but a significant amount of labeled corpus is necessary to ensure reliable performance.
- Forced alignment requires precise transcription, leading to a two-step process.

Our Approach

• We improve pause detection in dysarthric speech by treating pauses as distinct tokens in the E2E ASR model and extending it with an IP prediction layer.

Inappropriate Pause Detection Methods

- We extend a large-scale ASR model for inappropriate pause detection in dysarthric speech.
- Two separate layers:
 - Transcript prediction layer: We utilize a Seq2Seq architecture to transform speech input into text with pause tags.
 - Pause is added as a special token in Whisper
 - Inappropriate pause prediction layer: It determines the appropriateness of each token, classifying them as appropriate pauses, inappropriate pauses, or non-pauses (words).

Labeling Inappropriate Pauses

Original Text	느담아 <sil> 어 <sil> 완만함과 <sil> 깎아 놓은 듯한 <sil> 모옥함이 <sil> 어우러 <sil> 진 <sil> 안다엉이 따라 <sil> 오르다 보머 <sil> 널로 안마 <sil> 으아 수가 없게 <sil></sil></sil></sil></sil></sil></sil></sil></sil></sil></sil></sil>
Yale Romanization	nutama <sil> e <sil> wanmanhamkwa <sil> kkakka nohun tushan <sil> mookhami <sil> ewule <sil> cin <sil> antaengi ttala <sil> oluta pome <sil> nello anma <sil> ua swuka epskey <sil></sil></sil></sil></sil></sil></sil></sil></sil></sil></sil></sil>

- We add <SIL> tags to indicate pause locations in the text level.
- For each pause, we annotate its appropriateness
- Our method is much simpler than other time segmentation annotation, and can be applied other languagues.
- Inappropriate Pauses Annotation Criteria
 - Pause within a noun phrase
 - a patient cannot say a word in a single breath
 - Pauses following vocalic surplus expressions such as "uh" or "um"
 - only when accompanying unclear wording or incorrect pronunciation and excessively long pauses (longer than three seconds)
 - Pauses that occur to rectify mispronunciation

Experimental Results

Dataset

Severity	w/o dysarthria	Mild-to-Moderate	Severe	Total
# of Utterances	72	1985	194	2251

- Korean dysarthric speech corpus with the *Autumn paragraph*, containing all necessary consonants and vowels for evaluation.
- NIH Stroke Scale

Evaluation Metrics

- ASR: WER, CER
- Pause Detection: PauER, IPER
 - PauseSeq / IPSeq
 - Seprate ASR performance from Pause / IP Detection
 - CER with PauseSeq, IPSeq

Original Text	느담아 <sil> 어 <sil> 완만함과 <sil> 깎아 놓은 듯한 <sil> 모옥함이 <sil> 어우러 <sil> 진 <sil> 안다엉이 따라 <sil> 오르다 보머 <sil> 널로 안마 <sil> 으아 수가 없게 <sil></sil></sil></sil></sil></sil></sil></sil></sil></sil></sil></sil>
Yale Romanization	nutama <sil> e <sil> wanmanhamkwa <sil> kkakka nohun tushan <sil> mookhami <sil> ewule <sil> cin <sil> antaengi ttala <sil> oluta pome <sil> nello anma <sil> ua swuka epskey <sil></sil></sil></sil></sil></sil></sil></sil></sil></sil></sil></sil>
PauseSeq	0101010001010101001001001
IPSeq	0 2 0 2 0 1 0 0 0 1 0 1 0 2 0 1 0 0 1 0 0 1 0 0 2 0 0 0 1

Baselines

- Forced Alignment
 - MFA-GT: aligns the GT (human) transcription & speech
 - MFA-Whisper: aligns the ASR transcription from Whisper & speech
 - MFA-Dysarthric-Whisper: aligns the ASR transcription from fine-tuned
 Whisper & speech
- Conformer-RNNT with Pause tags

Results

	WER(%)	CER(%)	PauER(%)
MFA-GT	-	-	11.14
MFA-Whisper	54.89	27.35	22.49
MFA-Dysarthric-Whisper	32.21	22.38	17.27
Conformer-RNNT	64.52	49.99	22.81
Ours	25.31	11.96	3.077

- Our method outperforms others in both ASR & Pause detection, with lower PauER compared to MFA-GT.
- Higher ASR performance correlates with improved pause detection, indicating a complementary relationship between the two tasks.

Severity	WER(%)	CER(%)	PauER(%)	IPER(%)
Total	25.31	11.96	3.07	14.47
w/o dysarthria	6.93	2.89	2.48	20.69
Mild-to-Moderate	22.38	10.20	3.03	15.53
Severe	57.44	30.47	3.60	13.40

- IP (Inappropriate Pause) detection operates robustly across severity levels.
- As severity increases, ASR performance declines, suggesting the data was sufficient for IP detection but insufficient for ASR.

Conclusion

- An End-to-End Solution: Our model can detect pauses, predict inappropriate pauses, and transcribe dysarthric speech at the same time without any post-processing.
- Collaborative Criteria Establishment for Inappropriate Pauses: Collaboration with speech-language pathologists ensures the annotated data aligns closely with clinical expertise.
 - Real-world Applicability: Our approach demonstrates superior pause detection compared to baselines, highlighting the method's effectiveness across different dysarthria severity levels.